
XNU heap exploitation:
From kernel bug to kernel control

tihmstar

Topics
• Brief intro into XNU

• Mach ports

• Heap zones (kalloc,zalloc)

• treadm1ll

• Bug/Exploit

• v1ntex/v3ntex

• Bug/Exploit

Goal of this talk

• Introduce you to some aspects of XNU

• Get a general idea of how to go for exploitation

• Present real world techniques

• Walk you through some exploits

NOT Goal of this talk

• Understand every single aspect of XNU mentioned in this talk

• I only scratched the surface yet!

• Understand every single line of code in the exploits

• Try to understand the general idea behind it ;)

Disclaimer!
• I only read/reversed enough XNU to make this exploit work

• Some information presented here is good enough to explain why
certain things work/do not work, but may not 100% accurate!

• Some things might be (over-)simplified

• IMO this is the way to go for exploiting though!

• Time-Benefit-Tradeoff

Disclaimer!

• If you can't follow some things, this is totally fine!

• Try to follow the bigger picture, don't get lost in details!

• For full understanding reading exploit source code and re-reading
these slides is highly recommended

Mach ports
Mostly taken from:

 blogs.360.cn/post/IPC Voucher UaF Remote Jailbreak Stage 2 (EN).html

http://blogs.360.cn/post/IPC%20Voucher%20UaF%20Remote%20Jailbreak%20Stage%202%20(EN).html

Mach ports

• One-way transmission channel for mach messages

• Single receiver. One or multiple senders

• Represented in kernel as ipc_port structure

• Rights to the port stored in independent process ipc table

• Send/Receive right

Mach ports
• Used for inter-process-communication

• Tasks (processes) are also represented as mach ports

• Send rights to a task port means full control over the task

• Read/write memory

• Create/control threads

• Handle exceptions

• More…

Mach ports

• tfp0 is short for "task for pid 0"

• Goal is to get a send right to kernel task port

• Allows reading/writing kernel memory

Heap zones

Zalloc
• Kernel heap is divided into so called zones

• Each zone allocates pages

• Zones can split pages to allow sub-allocations of smaller size

• Eg. kalloc.16 zone divides a page into 16 byte chunks which can be allocated
individually (managed by kalloc)

• Unused zalloc allocations are garbage collected

• Freeing all kalloced elements in a page does not guarantee page being
released from the zone

Kalloc

• Wrapper for zalloc

• Manages multiple zones

• kalloc.16, kalloc.32, kalloc.64, kalloc.1024, kalloc.4096, ...

• Programmer needs to remember size of allocation

• kfree(<ptr>,<size>)

treadm1ll: The Bug

https://www.synacktiv.com/posts/exploit/lightspeed-a-race-for-an-iosmacos-
sandbox-escape.html

Bug: Lightspeed
• Very very brief overview of the bug!

• lio_listio can be called synchronously and asynchronously

• Synchronous:

• Get userinput

• Do stuff

• if (lio_context->io_issued == 0) free_lio_context(lio_context)

• Asynchronous:

• Get userinput

• Call function asynchronously

• if (lio_context->io_issued == 0) free_lio_context(lio_context)

Bug: Lightspeed
• Very very brief overview of the bug!

• lio_listio can be called synchronously and asynchronously

• Synchronous:

• Get userinput

• Do stuff

• if (lio_context->io_issued == 0) free_lio_context(lio_context)

• Asynchronous:

• Get userinput

• Call function asynchronously

• if (lio_context->io_issued == 0) free_lio_context(lio_context)

This guy may also call free!

Bug: Lightspeed

• Race condition in lio_listio in asynchronous mode!

• Asynchronous:

• Get user input

• Call function asynchronously

• if (lio_context->io_issued == 0) free_lio_context(lio_context)

Doublefree if asynchronous
functions finishes, before this

tries to free

POC: Lightspeed

• Call lio_listio in asynchronous mode

• Hope for worker thread to free before function finishes

• Reallocate buffer with second word set to 0

• To satisfy if (lio_context->io_issued == 0)

• lio_listio will free the buffer again!

POC: Lightspeed
Thread1:

Trigger lio_listio

Thread2:
Reallocate buffer

Lightspeed Exploit Plan

• Turn double free into Use-After-Free

• Overlap useful object with controlled data

• Use fake object to get kernel slide and kernel read/write

• Finally get send right to kernel task

• Short: get tfp0 (task for pid 0)

Mach Messages

• You can send a mach message to a mach port

• Sender does not need a port to identify

• Usually sends a SEND_ONCE_RIGHT to his port, if receiving a
response is desired

• Optionally can send more ports (actually: *_RIGHT to port)

Mach Port Rights

• Ports can be sent inline and out of line (ool)

• Recall Zones? :P

• Mach message goes into special heap zone

• Mach message OOL buffer goes into kalloc zone!

Mach Messages

Mach Messages

Mach Msg Header

Mach Port Descriptor 1

Mach Port 1

Mach Port Descriptor 2

Mach Port Descriptor 3

Mach Msg Body
Mach Msg Header

Mach Port OOL Descriptor

Mach Msg Body

Mach Port Descriptor 1

Mach Port Descriptor 2

Mach Port Descriptor 3

Inline Out Of Line

treadm1ll: Exploit Plan
• When sending mach message with 2 OOL ports, the OOL buffer

goes into kalloc.16 zone!

• The first port needs to be MACH_PORT_NULL

• First QWORD is zero

• Satisfies condition

• Second port is SEND_RIGHT to the port which receives the
message (used for identification)

• Reallocate buffer with second word set to 0

• To statisfy if (lio_context->io_issued == 0)

treadm1ll: Stage 1

• Thread 1: Trigger lio_listio double free bug

• Thread 2: Continuously spray OOL ports

• Let's say 0x4000

Mach msg

Kalloc.16

msg

• Mach message is allocated

Mach msg

Kalloc.16

msg

ool

• OOL buffer is allocated

Mach msg

Kalloc.16

msg msg

ool

• Mach message is allocated

Mach msg

Kalloc.16

msg msg

ool ool

• OOL buffer is allocated

Mach msg

Kalloc.16

msg msg msg

ool ool lio

• lio_listio is allocated in kalloc.16

Mach msg

Kalloc.16

msg msg msg

ool ool lio

• lio_listio freed after asynchronous thread finishes

Mach msg

Kalloc.16

msg msg msg

ool ool ool

• ool buffer is allocated in same slot where lio_listio lived

Mach msg

Kalloc.16

msg msg msg

ool ool ool

• lio_listio freed again after synchronous thread finishes

Mach msg

Kalloc.16

msg msg msg

ool ool ool

msg

• Another mach message is allocated

Mach msg

Kalloc.16

msg msg msg

ool ool ool

msg

• New ool allocation falls in old (free) slot

Mach msg

Kalloc.16

msg msg msg

ool ool ool

msg msg

• More messages are allocated

Mach msg

Kalloc.16

msg msg msg

ool ool ool

msg msg

ool

• More ool buffers are allocated

Mach msg

Kalloc.16

msg msg msg

ool ool ool

msg msg

ool

msg

ool

msg msg msg msg msg msg

ool ool ool ool ool ool

• At least one ool buffer is used by 2 msgs!

• Receive mach messages in order

• Expect first port in message to be MACH_PORT_NULL

• Expect second port be same as the one we receive the message with

• Not true for overlapping OOL buffer, because later msg overwrote
earlier msg!

• Second port is now the one with the dangling pointer

• Because mach msg and OOL buffer get freed when received

1 2 4 5 12
NULL

1
NULL

2
NULL

4
NULL

5
NULL

12

1 2 3 4 5 12

...

• Receive mach messages in order

• Expect first port in message to be MACH_PORT_NULL

• Expect second port be same as the one we receive the message with

• Not true for overlapping OOL buffer, because later msg overwrote
earlier msg!

• Second port is now the one with the dangling pointer

• Because mach msg and OOL buffer get freed when received

1 2 4 5 12
NULL

1
NULL

2
NULL

4
NULL

5
NULL

12

1 2 3 4 5 12

...
Gets freed when we
receive message on

Port 3

treadm1ll: Stage 2

• Every time we receive a mach msg, spray 120 OSData objects with
controlled data

• First 8 bytes: a pointer to a fake mach port

• Second 8 bytes: zero

• When received the overlapping buffer, the pointer of the second
message now points to our sprayed data!

4
fakeptr
NULL

4

fake

treadm1ll: Stage 3

• Receive the mach msg, where the ool buffer pointer points to our
controlled OSData

• We get a port descriptor to our fake port!

• Here i use iPhone5s without PAN, and spray a pointer to userspace
where i construct a fake mach port.

Copy & Paste v0rtex
• Now we have a port descriptor to a fake port

• Just continue with (https://siguza.github.io/v0rtex/) to:

• Leak a heap pointer to a real port

• Build a read primitive

• Leak KASLR slide

• Build a KCALL primitive (also gives you kernel write!)

https://siguza.github.io/v0rtex/

Warning: Caveat!
• Problem:

• We have a send right to the fake port, not receive right

• We can't register a port for death notification without recv right to it :(

• We can't spray recv right to port we want to recv on

• Solution:

• Just keep 2 lists of mach ports!

• Port1[i] for receiving mach messages and port2[i] for sending recv right

• We need to keep a send right to port2[i], otherwise it changes it's name (we won't
recognise) when lose all rights to it.

Before: Spray SEND_RIGHT

Mach port_1[i] Mach message

OOL BUF

send msg to port

msg points to
ool bufmessage sends

SEND_RIGHT to
mach port_1[i]p = recvPort(port_1[i])

if (p != port_1[i]){
 overlapping buf found!
}

After: Spray RECV_RIGHT

Mach port_1[i] Mach message

OOL BUF

send msg to port

msg points to
ool bufmessage sends

RECV_RIGHT to
mach port_2[i]

p = recvPort(port_1[i])
if (p != port_2[i]){
 overlapping buf found!
}

Mach port_2[i]

keep recv right

keep send right

treadm1ll: With PAN
• Get overlapping OOL buffer as presented

• Spray OSData with 16 bytes zero as presented (now OSData and OOL buffer are overlapping!)

• Receive target message, while spraying more OOL messages
(now OSData got freed and reallocated with pointer to mach port)

• Read back OSData to leak pointer to mach port (non-destructive)

• Align pointer to PAGE_SIZE and increase it by 64 pages

• Free OSData and realloc it with new pointer

• Spray 0x400 pages with a fake port (hope to hit the pointer we set up)

• Receive mach message with port descriptor to fake pointer and proceed with v0rtex!

treadm1ll: With PAN
• Read the exploit code to get a better understanding!

https://github.com/tihmstar/treadm1ll

• PANless version was chosen because kalloc.16 is very noisy (lots of
allocations happening)

• PA(i)Nful version of this exploit is left as exercise to the interested
reader/listener ;P

• Spawning/Suspending threads might increase success rate
(Run your own experiments!)

https://github.com/tihmstar/treadm1ll

v1ntex/v3ntex: The Bug

IPC Voucher UAF

http://blogs.360.cn/post/IPC Voucher UaF Remote Jailbreak Stage (EN).html

http://blogs.360.cn/post/IPC%20Voucher%20UaF%20Remote%20Jailbreak%20Stage%202%20(EN).html

BUG: IPC Voucher UAF

Mach Interface Generator (MIG)

• Too complex to cover in this presentation

• I don't know how it works

• Basically:

• Generates C code from def files

• Easy-to-use functions which use MACH API under the hood

code.defs
#include <mach/std_types.defs>
#include <mach/mach_types.defs>
subsystem SU 100;
routine rootify(
 server : mach_port_t;
 in target : task_t
);

Just run 'mig code.defs' to get....

MIG

• Generates *a lot* of code!

• Very complex

• Set of rules/assumptions

• Things break if these assumptions are invalidated!

Really don't want to focus on
MIG, lets jump into the POC!

Examining the POC

• Create vouchers

• Register voucher to thread

• Free voucher

• Get dangling voucher

If you can't read
the code, that's fine!

Examining the POC

• Create vouchers

• Register voucher to thread

• Free voucher

• Get dangling voucher

If you can't read
the code, that's fine!

Examining the POC

• Create vouchers

• Register voucher to thread

• Free voucher

• Get dangling voucher

If you can't read
the code, that's fine!

Examining the POC

• Create vouchers

• Register voucher to thread

• Free voucher

• Get dangling voucher

If you can't read
the code, that's fine!

Examining the POC

• Create vouchers

• Register voucher to thread

• Free voucher

• Get dangling voucher

If you can't read
the code, that's fine!

IPC Voucher UAF: Exploit Plan
• Get dangling voucher pointer (alloc voucher + drop extra ref)

• Release page from voucher zone

• Realloc page in kalloc zone and fill with controlled data

• Leak pointer to ipc_port

• Modify ptr and craft fake port in kernel

• Get kread primitive

v1ntex exploit

• This is Memory

v1ntex exploit

• Memory is divided into
pages

v1ntex exploit

• Some pages are already
allocated with holes in it

v1ntex exploit

1. Allocate GC-vouchers
(starts filling holes)

GC GC

v1ntex exploit

2. Allocate
BEFORE-vouchers

Main purpose:
- fill holes

GC GC BF

BF BF

v1ntex exploit

2. BEFORE-vouchers
don't neccessarily fill
up full pages

GC GC BF

BF BF

BF

VBVBVBVB

VBVB

v1ntex exploit

3. Alloc TARGET-voucher

GC GC BF

BF BF

BF

VBVBVBVB

VBVB VT

VT

v1ntex exploit

4. Alloc AFTER-voucher

GC GC BF

BF BF

BF

VBVBVBVB

VBVB VT

VT

VAVAVAVA

VAVAVAVA

VA

v1ntex exploit

4. Alloc AFTER-voucher

GC GC BF

BF BFVT AF AF

v1ntex exploit

5. Drop extra ref on
TARGET-voucher and
thus free it

GC GC BF

BF BFVT AF AF

v1ntex exploit

6. Free all
BEFORE-vouchers
and
AFTER-vouchers

NOTE: Pages are still in
voucher Zone!

GC GC

VT

v1ntex exploit

7. Free GC-vouchers now
to have them at the very
top in the freelist!

GC-voucher memory is
now before other
allocations and on top
of freelist

VT

v1ntex exploit

8. Trigger a Garbage
collection to release
unused pages!

VT

v1ntex exploit

8. Slowly allocate
vouchers
(which hopefully fall in
GC region) and
measure time

VT

Previous GC region V V
V

v1ntex exploit
8. Subsequent allocations

will eventually trigger
garbage collection
which can will be seen
as a time peak!

NOTE: another big
peak could indicate
page allocation

VT

V V
V

v1ntex exploit

9. Spray controlled data to
overlap with dangling
voucher

D

GC

VT

V V
V

DD D

D D D

v1ntex exploit

10.Release unused GC-
vouchers

We don't care about
that zone anymore

DVT

DD D

D D D

v1ntex exploit

11. Read back dangling
voucher

This will cause a new
port to be allocated and
a pointer to it stored in
the fake voucher

DVT

DD D

D D D

v1ntex exploit

11. Read back dangling
voucher

This port can fall into
several places!

OLD page?
NEW page?

P? P?

DVT

DD D

D D D P?

v1ntex exploit
11.We could increate

likelihood of port falling
in a new page by
allocating several ports
before reading back the
voucher

(not actually done in
v1ntex)

DVT

DD D

D D D P
PT

v1ntex exploit

11.We now have a heap
pointer to a real port!

DVT

DD D

D D D P
PT

v1ntex exploit

12.Allocate more ports

DVT

DD D

D D D P
PT

P

v1ntex exploit
13.Increment pointer by

enough pages and
align it to start of page

This is done by freeing
and reallocating the
data page were
TARGET-voucher
resides

DVT

DD D

D D D P
PT

P

v1ntex exploit

14.Allocate more data, but
this time fake ports!

We allocate whole
pages and put the fake
port at the beginning of
the page because we
aligned the pointer

DVT

DD D

D D D P
PT

P D2

D2 D2D2
FP

v0rtex kread
• Have a fake port pointing to a fake task, which also resides in data buffer

• Have the faketask task_bsd_info member overlap with fakeport context
member

• Use pid_for_task() to dereference task_bsd_info and read 32bit

• Use (custom) port_set_context() function to modify context from
userland without buffer reallocation

• BUT: port_set_context() requires RECV_RIGHT which we don't have
here :(

v1ntex kread

• Make the fakeports kobj overlap with a real ipc_port where we have
RECV_RIGHT

• We can set context member of that port and do the same trick

• Only other constraint: kobj refcount needs to be != 0

• Can we satisfy that?

v1ntex exploit

DVT

DD D

D D D P
PT

P D2

D2 D2D2
FP

v1ntex exploit

DVT

DD D

D D D P
PT

P D2

D2 D2D2
FP

P

pppp

pp p

pppp

pppp

p

v1ntex exploit

p p p p p p

v1ntex exploit

p p p p p p

v1ntex exploit

p p p p p p

v1ntex exploit

p p p p p p

t

v1ntex exploit

p p p p p p

t

v1ntex kread
• ktask refcount overlaps with 32bit of ipc_port ip_requests

• To get valid refcount (iOS 11) ip_requests needs to be != 0

• Any pointer value is fine!

• Just set ip_requests on all sprayed ports

• mach_port_set_attributes() causes allocation and stores pointer
there

v1ntex kread
• ktask refcount overlaps with 32bit of ipc_port ip_requests

• To get valid refcount (iOS 11) ip_requests needs to be != 0

• Any pointer value is fine!

• Just set ip_requests on all sprayed ports

• mach_port_set_attributes() causes allocation and stores pointer
there

v1ntex exploit

DVT

DD D

D D D P
PT

P D2

D2 D2D2
FP

R

Fakeport points to
faketask which simply
overlaps with real port

kport_t* R = PT-
sizeof(kport_t)

We already know where
PT is
(we leaked that earlier)

v1ntex kread

• Now we can kread!

• Set a pointer with
port_set_context()
and to read 32bit
from its location
with
pid_for_task()

v1ntex exploit
• Now we got:

• kread

• Pointer to real port with RECV_RIGHT

• Proceed with v0rtex to leak:

• itk_space

• self_task

• IOSurfaceRootUserClient port/address/vtable

• kernel base

v3ntex exploit
• iOS 12 added refcount mitigations

• os_refcnt_t allowed range is 1-0x0fffffff (7 f's, not 8)

• Refcount outside this range panics :(

• Upper 32bit always panic

• Lower 32bit panic if value higher than 0x0fffffff

• Happens if we do lots of allocations (which we do)

• Overlapping technique also breaks if ipc_port or ktask is changed

v3ntex exploit

• Similar to @_bazad approach we use pipes!

• v1ntex->v3ntex

• Put fakeport and faketask in pipe buffer instead of OSData

• Allows safely read and write inside the buffer

• No need for port_set_context() hack

Pipes

• POSIX programs use filedescriptors

• Default ones: stdin, stdout, stderr

• Pipe gives you input and output descriptor, for reading/writing

Pipes

• Blocking pipe

• Write stalls until all data was read

• Nonblocking pipe

• Write stores data in the pipe and finishes

• Read gets data from the pipe (and thus clears buffered data)

Pipes

Data

Input Output

Data

Data

Blocking

Pipes

Data

Write

Non-Blocking

Pipes

Data

Write

Data

Non-Blocking

Pipes

Data

Write

Data

Data

Data

Data

Data

Data

Data

Non-Blocking

Pipes
Idle

Data

Data

Data

Data

Data

Data

Data

Non-Blocking

Pipes
Read

Data

Data

Data

Data

Data

Data

DataNon-Blocking

Pipes
• Nonblocking pipe allocates buffer in kernel which is big enough to hold

the data

• This allows as to:

• Make a controlled size allocation by writing data in buffer

• Reading data by reading from pipe

• Modifying buffer by reading from it and writing it back

• Allocation stays if we don't increase size of data to be buffered

v1ntex exploit

11.We now have a heap
pointer to a real port!

DVT

DD D

D D D P
PT

v3ntex exploit

11.We now have a heap
pointer to a real port!

DVT

DD D

D D D P
PT

v3ntex exploit

DVT

DD D

D D D P
PT

12.Increment pointer by
enough pages and
align it to start of page

This is done by freeing
and reallocating the
data page were
TARGET-voucher
resides

v3ntex exploit

DVT

DD D

D D D P
PT

13.Allocate pipe buffers
(instead of OSData)
with fake ports

We allocate whole
pages and put the fake
port at the beginning of
the page because we
aligned the pointer

PB PB

PB PBPB
FP

v3ntex exploit

DVT

DD D

D D D P
PT13.Make the fakeport point

to faketask, which
resides in the same
pipebuffer

PB PB

PB PBPB
FP

FT

v3ntex kread
• Read buffered data from

pipe

• Modify ktasks
task_bsd_info element

• Write data back to pipe

• Use pid_for_task() to read
32bit value

What next?
• We have:

• Controlled fake port

• kread primitive

• KASLR slide

• We want:

• Proper kernel task

Continue v0rtex style
• Read kernel zone_map address

• Update faketasks zone map
(we didn't need this before)

• Use that fakeport/faketask to
remap page to userspace
(for safe port/task updates)

• Important for v1ntex,
not so important for v3ntex

Continue v0rtex style
• Dump vtable of IOSurfaceRootUserClient

• Change fakeport type to IOKit object
(fake IOSurfaceRootUserClient)

• Create fake vtable with modified pointer

• Create KCALL primitive by chaining gadgets

• Call arbitrary kernel functions through IOConnectTrap6()

Continue v0rtex style
• Replace process credentials with kernel credentials

• Allows calling setuid(0)

• Call setuid(0) and get privileged mach_host_port

• Find real kernel_task (kread)

• Remap kernel_task 
(get a second virtual mapping for the same physical memory)

• Store cloned kernel_task in host_special_ports for easy retrieval from root process

• Clean up exploit

Conclusion
• Introduced XNU Heap Zones (zalloc,kalloc)

• Talked about heap exploit techniques and strategies

• Introduced Mach Ports and outlined its importance for kernel
exploitation

• Full walkthrough of 3 kernel exploits for 2 heap bug

• Protip: always turn your primitive into UAF/type confusion
(if you can)

Source Code

• For better understanding:
Read the exploit source code and re-read these slides ;)

• https://github.com/tihmstar/treadm1ll

• https://github.com/tihmstar/v1ntex

• https://github.com/tihmstar/v3ntex

https://github.com/tihmstar/treadm1ll
https://github.com/tihmstar/v1ntex
https://github.com/tihmstar/v3ntex

Questions?

